Assured Resource Sharing in Ad-hoc Collaboration

DE-FG02-10ER25984 **DOE PI Meeting, March 1-2, 2012**

Gail-Joon Ahn

Computer Science and Engineering

The Laboratory of Security Engineering for Future Computing (SEFCOM) •

URL : sefcom.asu.edu

BYENG 486 ASU

ARIZONA STATE UNIVERSITY

Technologies for ad-hoc collaboration

Characteristics of ad-hoc collaboration

- Ad-hoc collaboration is a newly emerged environment for distributed communities
 - Highly dynamic and distributed
 - Collaboration is triggered at any point and by adhoc events
 - Loosely established collaboration relationships among strangers
 - No pre-established infrastructure and trust base available for information sharing

SEFCOM

The Laboratory of Information Integration, Security and Privacy

March 2, 2012

Slide 3

Problem statement

- Information sharing in ad-hoc collaboration is always conditional, and needs to be highly controlled.
- Approaches
 - Secure sharing in Grids and Cloud
 - Effective access control framework [1]
 - Dynamic Audit Services [2]
 - Policy analysis for assurance [3][4]
 - Risk-aware network assurance [5]

Selected results

- [1] **Gail-J**. **Ahn**, Jing Jin* and Mohamed Shehab, "Policy-driven Role-based Access Management for Ad-hoc Collaboration," <u>Journal of Computer Security</u>, 2012 (In press).
- [2] Yan Zhu, **Gail-J. Ahn**, Hongxin Hu*, Stephen S. Yau and Ho G. An, "Dynamic Audit Services for Outsourced Storages in Clouds," <u>IEEE Transactions on Services Computing</u>, 2012 (In press).
- [3] Hongxin Hu*, Gail-J. Ahn and Ketan Kulkarni*, "Detecting and Resolving Firewall Policy Anomalies," <u>IEEE Transactions on Dependable and Secure Computing</u>, 2012 (In press).
- [4] Ziming Zhao*, Hongxin Hu*, **Gail-J**. **Ahn** and Ruoyu Wu*, "Risk-Aware Response for Mitigating MANET Routing Attacks," <u>IEEE Transactions on Dependable and Secure Computing</u>, Vol. 9(2), pp. 250-260, 2012.
- [5] Ziming Zhao*, Gail-J. Ahn and Hongxin Hu*, "Automatic Extraction of Secrets from Malware," <u>Proc. of 18th Working Conference on Reverse Engineering (WCRE)</u>, Limerick, Ireland, October 17- 20, 2011.
- * indicates students

SEFCOM

The Laboratory of Security Engineering for Future Computing

2-Mar-12

Slide 5

Problem statement

- Information sharing in ad-hoc collaboration is always conditional, and needs to be highly controlled.
- Approaches
 - Secure sharing in Grids and Cloud
 - Effective access control framework [1]
 - Dynamic Audit Services [2]
 - Policy analysis for assurance [3] [4]
 - Risk-aware network assurance [5]

Systematic research approach

The Laboratory of Information Integration, Security and Privacy

March 2, 2012

Slide 7

SEFCOM

ARIZONA STATE UNIVERSITY

Access Control Requirements -- Information sharing flow

- Access management requirements:
 - The originator needs an effective way to define the virtual collaborative sharing domain and authorize the unknown collaborators inside the domain
 - Access control should guarantee the sharing occurs within the originator's collaborative sharing domain, and sharing behaviors must be well regulated

SEFCOM

Role-based approach (RAMARS)

ARIZONA STATE UNIVERSITY

Trusted attribute-based role assignment

Trust evaluation

- Observations:
 - Attributes are asserted by multiple authorities
 - · e.g. "name=John" through org card, Gov card, and so on
 - Attribute assertion can be achieved through a chain of delegation.
 - · e.g. ASU→ Registrar → "name=John"
- Affecting factors for trust evaluation:
 - Credential authority
 - Number of supportive credentials
 - Depth of delegation chain
- Trust level is introduced to measure the degree of trust
- Only attributes that achieve the required level of trust are promoted to the role assignment

SEFCOM

The Laboratory of Information Integration, Security and Privacy

March 2, 2012

Slide 11

Policy Specification

ABC → AdminiStaff → Dave (affiliation=ABC)

Policy evaluation

ARIZONA STATE UNIVERSITY

Enforcement system architecture

RAMARS system architecture cont'd

SEFCOM

The Laboratory of Information Integration, Security and Privacy

March 2, 2012

Slide 15

ARIZONA STATE UNIVERSITY

Systematic research approach

RAMARS in P2P - ShareEnabler system

The Laboratory of Information Integration, Security and Privacy

March 2, 2012

Slide 17

RAMARS in P2P -- implementation

RAMARS in P2P - Experiment 1 credential increase

 Increase in the number of credentials would affect the performance of trust evaluation

- Improvement 1 credential indexing
 - Implement a map-based indexing mechanism to improve the trust evaluation performance

SEFCOM

The Laboratory of Information Integration, Security and Privacy

March 2, 2012

Slide 19

ARIZONA STATE UNIVERSITY

RAMARS in P2P – Experiment 2 role and attribute increase

- Increase in the number of attributes and roles would affect the role assignment and authorization evaluation
- AC verification

 Load policies

 Pre-process policy

 The evaluation

 RAMARS Engine

Increase attrs/creds/roles

- Improvement 2 bitmap policy indexing
 - Using bitmap and bit-wise comparison to expedite the role assignment evaluation

RAMARS in P2P – Experiment 3 overhead measurement

 Measure the overhead introduced by RAMARS authorization to scientific P2P data sharing

RAMARS Overhead Analysis

Test case (attr,cred,role)	Base	(10,10,10)	(20,20,20)	(30,30,30)
Total time (seconds)	487.5	488.0	489.0	490.8
Overhead (%)	0.00	0.10	0.30	0.68
Test case (attr,cred,role)	(40,40,40)	(50,50,50)	(80,80,80)	(100,100,100)
Total time (seconds)	492.8	495.4	499.8	508.3
Overhead (%)	1.07	1.61	2.53	4.27

SEFCOM

The Laboratory of Information Integration, Security and Privacy

March 2, 2012

Slide 21

RAMARS in Grids

- Grid computing is a more structured and comprehensive collaborative sharing infrastructure
- Challenges
 - Service-oriented trend and Grid authorization service
 - Attributes from physical and virtual authorities
 Push vs. Pull
 - Service-level control and data level control
 - Interoperability with various Grids standards and services

RAMARS in Grids - RamarsAuthZ service

SEFCOM

The Laboratory of Information Integration, Security and Privacy

March 2, 2012

Slide 23

ARIZONA STATE UNIVERSITY

RAMARS in Grids - RamarsAuthZ operations

The Laboratory of Information Integration, Security and Privacy

March 2, 2012

Slide 24

RAMARS in Grids – Testbed for performance evaluation

ARIZONA STATE UNIVERSITY

Problem statement (revisited)

- Information sharing in ad-hoc collaboration is always conditional, and needs to be highly controlled.
- Approaches
 - Secure sharing in Grids and Cloud
 - Effective access control framework [1]
 - Dynamic audit services [2]
 - Policy composition and schema integration
 - Policy analysis for assurance [3][4]
 - Risk-aware network assurance [5]

Thank you!

Looking forward to collaborating with you!!

http://sefcom.asu.edu

Slide 27